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Abstract. Retrieval-Augmented Generation (RAG) enhances Large Lan-
guage Models (LLMs) by integrating external document retrieval to pro-
vide domain-specific or up-to-date knowledge. The effectiveness of RAG
depends on the relevance of retrieved documents, which is influenced by the
semantic alignment of embeddings with the domain’s specialized content.
Although full fine-tuning can align language models to specific domains,
it is computationally intensive and demands substantial data. This pa-
per introduces Hierarchical Embedding Alignment Loss (HEAL), a novel
method that leverages hierarchical fuzzy clustering with matrix factoriza-
tion within contrastive learning to efficiently align LLM embeddings with
domain-specific content. HEAL computes level/depth-wise contrastive losses
and incorporates hierarchical penalties to align embeddings with the un-
derlying relationships in label hierarchies. This approach enhances retrieval
relevance and document classification, effectively reducing hallucinations
in LLM outputs. In our experiments, we benchmark and evaluate HEAL
across diverse domains, including Healthcare, Material Science, Cyber-
security, and Applied Maths.
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1 Introduction

Large Language Models (LLMs), such as GPT-4 [OpenAI, 2023], have demon-
strated exceptional capabilities in natural language understanding and generation.
However, LLMs are prone to hallucinations, generating plausible but incorrect
or nonsensical content [Ji et al., 2023]. Retrieval-Augmented Generation (RAG)
frameworks [Lewis et al., 2020] mitigate this issue by integrating external knowl-
edge through document retrieval, enhancing the factual accuracy of LLM outputs.
A critical component of RAG systems is the embedding model used for docu-
ment retrieval. Standard embedding models, however, often fail to capture the
hierarchical and semantic relationships within domain-specific corpora, leading
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to suboptimal retrieval and, consequently, increased hallucinations. This issue is
particularly pronounced in domains with increased specificity such as Healthcare,
Legal sytem, and Scientific research.

Corpus of documents for a specialized domain inherently exhibit a high degree
of semantic coherence, presenting an opportunity to align embedding models for
retrieving the most contextually relevant information. Hierarchical Non-negative
Matrix Factorization (HNMF) [Eren et al., 2023] is a powerful technique for se-
mantically categorizing documents into clusters that exhibit thematic coherence.
By grouping documents into hierarchical clusters of supertopics and subtopics,
HNMF provides a rich semantic categorization of the corpus, enabling a deeper
understanding of document relationships. Leveraging this semantic knowledge in
the form of hierarchical cluster labels, we can align embedding models to preserve
hierarchical information within the embedding space. This alignment enhances the
embeddings to capture both coarse-grained and fine-grained document similarities,
improving contextual relevance in retrieval tasks and enabling better downstream
capabilities.

To tackle the challenges of hallucination and suboptimal retrieval in RAG sys-
tems, we introduce the Hierarchical Embedding Alignment Loss (HEAL),
a refined extension of the Hierarchical Multi-label Contrastive Loss [Zhang et al.,
2022]. HEAL leverages an improved hierarchical weighting scheme to align em-
beddings more effectively with the underlying hierarchical structure. By incorpo-
rating hierarchical label structures, HEAL fine-tunes embedding models to align
with document clusters derived from HNMF. The method computes contrastive
losses at each hierarchical level, combining them with depth-specific penalties to
emphasize distinctions at higher levels of the hierarchy.

Our contributions are summarized as follows:

1. Introduce a refined contrastive learning framework, named HEAL, that in-
corporates hierarchical label structures to align embeddings with hierarchical
document relationships.

2. Integrate HEAL into RAG systems, fine-tuning embedding models to improve
retrieval accuracy and reduce hallucinations in LLM outputs.

3. Validate and benchmark HEAL through extensive experiments on domain-
specific datasets from specialized scientific sub-domains of Healthcare, Mate-
rial Science, Tensor Decomposition, and Cyber-security.

4. Showcase significant improvements in retrieval relevance and downstream tasks
compared to baseline method.

2 Related Work

Contrastive learning has become a cornerstone of representation learning, partic-
ularly in computer vision and natural language processing. Methods like SimCLR
[Chen et al., 2020] and MoCo [He et al., 2020] have achieved state-of-the-art per-
formance in unsupervised settings by learning representations that are invariant
to data augmentations. In supervised contrastive learning, Khosla et al. [2020]
extended the contrastive loss to utilize label information, improving performance
on classification tasks. Similarly, the SciNCL framework employs neighborhood
contrastive learning to capture continuous similarity among scientific documents,
leveraging citation graph embeddings to sample both positive and negative exam-
ples Ostendorff et al. [2022]. However, these methods generally assume flat label
structures and do not exploit hierarchical relationships.
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Hierarchical classification has been studied extensively, with approaches such
as hierarchical softmax [Goodman, 2001] and hierarchical cross-entropy loss [Deng
et al., 2014]. These methods aim to leverage hierarchical label structures to im-
prove classification efficiency and accuracy. In the context of representation learn-
ing, Deng et al. [2011] introduced hierarchical semantic embedding, aligning image
embeddings with WordNet hierarchies. More recent works, such as Bertinetto et al.
[2020], have explored hierarchical prototypes to capture hierarchical relationships.
Zhang et al. [2022] propose a hierarchical multi-label contrastive learning frame-
work that preserves hierarchical label relationships through hierarchy-preserving
losses. Their method excels in scenarios with hierarchical multi-label annotations,
such as biological or product classifications. In contrast, our approach focuses on
enhancing information retrieval to mitigate hallucinations.

RAG frameworks combine retrieval models with generative models to enhance
the factual accuracy of language generation [Lewis et al., 2020]. These systems
rely heavily on the quality of the embeddings used for retrieval. Prior work has
focused on improving retrieval through better indexing and retrieval algorithms
[Karpukhin et al., 2020], but less attention has been given to aligning embeddings
with hierarchical document structures.

3 Method

In this section, we propose an embedding alignment framework comprising hi-
erarchical label extraction with HNMF, embedding alignment using HEAL, and
retrieval with aligned embeddings as outlined in Figure 1.

3.1 Hierarchical Document Clustering with HNMFk.

Hierarchical Non-negative Matrix Factorization with automatic latent feature es-
timation (HNMFk) Eren et al. [2023] is an advanced technique for uncovering
hierarchical patterns within document collections. It builds on traditional Non-
negative Matrix Factorization (NMF) Vangara et al. [2021] by dynamically and
automatically determining the optimal number of latent features at each level.
Effective contrastive learning relies on well-separated document cluster labels to
align embeddings effectively. HNMFk’s ability to automatically balance stability
and accuracy using a bootstrap approach enhances the quality of clustering re-
sults. In this work, we utilize the publicly available HNMFk implementation from
the TELF library 6.

Given a Term Frequency-Inverse Document Frequency (TF-IDF) matrix X ∈
Rn×m, where n represents the vocabulary size and m denotes the number of doc-
uments, HNMFk performs a sequence of matrix factorizations across hierarchical
levels to capture the nested structure of topics. At each level l, the factorization is
expressed as X ≈ W(l)H(l), where W(l) ∈ Rn×kl is the basis matrix representing
latent topics, and H(l) ∈ Rkl×m is the coefficient matrix quantifying the contribu-
tion of each topic to the composition of documents. Here, kl is the number of topics
at level l, which is determined automatically through stability analysis Vangara
et al. [2021]. This analysis involves bootstrapping the data to create resampled
versions of the TF-IDF matrix, applying NMF across a range of k values, and
evaluating the stability of clusters across the resampled datasets. The optimal
6 TELF is available at https://github.com/lanl/T-ELF

https://github.com/lanl/T-ELF
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Fig. 1: Overview of the HEAL-Based Embedding Model Alignment and Retrieval.
The left side illustrates hierarchical label generation using HNMF, where docu-
ments corresponding to a cluster from each preceding depth are converted into
TFIDF matrices and further decomposed to extract sub-clusters. The TSNE vi-
sualizations highlighting cluster memberships in document embeddings. The right
side depicts fine-tuning of the SciNCL model using HEAL loss on generated em-
beddings and HNMF derived labels. Once trained, the aligned model computes a
vector store from the corpus, enabling retrieval of the nearest p documents for a
given query embedding.

kl is selected as the value that produces the most consistent clustering results,
indicating a robust underlying structure in the data.

To construct hierarchical labels for each document, the coefficient matrix H(l)

is used to determine topic assignments. For each level l, the topic for document
i is identified by selecting the index of the maximum value in the correspond-
ing column of H(l), expressed as y

(l)
i = argmaxk H

(l)
k,i. The hierarchical label for

document i is then formed by aggregating the topic assignments across all levels,
resulting in yi = (y

(0)
i , y

(2)
i , . . . , y

(L−1)
i ). Here, L is the total number of hierarchical

levels, or hierarchical depth that is the number of NMFk operations from the first
one to the leaf. yli is the label of sample i at level l, with l = 0 corresponding to
the shallowest(most general or root node) level and l = L−1 to the deepest (most
fine-grained, or leaf node) level.

3.2 Hierarchical Multilevel Contrastive Loss (HEAL)

Upon the unsupervised data decomposition with HNMFk, the datasets have clus-
ters with hierarchical structures. To incorporate such structures, we propose the
HEAL, which extends supervised contrastive loss [Khosla et al., 2020] by introduc-
ing level-wise contrastive losses and aggregating them with level-specific penalties.
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Level-wise Contrastive Loss For a batch of N samples {(xi,yi)}Ni=1, where
xi ∈ Rd is the input and yi ∈ RL is the hierarchical cluster label, we obtain
normalized embeddings {hi}Ni=1 using an encoder network fθ(·):

hi =
fθ(xi)

∥fθ(xi)∥2
, hi ∈ Rd. (1)

For a given level l, the set of positive samples for sample i is:

P (i, l) = {p | yl
p = yl

i, p ̸= i}. (2)

The contrastive loss at level l for sample i is:

Li,l =
−1

|P (i, l)|
∑

p∈P (i,l)

log
exp

(
h⊤
i hp/τ

)∑N
a=1 exp

(
h⊤
i ha/τ

) . (3)

If P (i, l) is empty (i.e., no positive samples at level l for i), Li,l is excluded
from the total loss.

Aggregating Level-wise Losses with Penalties To prioritize discrepancies at
shallower levels, we assign penalties λl to each level l, where shallower levels have
higher penalties. The penalties are defined as:

λl =
2L−l−1∑L−1
k=0 2k

=
2L−l−1

2L − 1
. (4)

The penalties λl satisfy:

1. λl > λl+1 for l = 0, 1, ..., L− 2, i.e., penalties decrease for deeper levels.
2.

∑L−1
l=0 λl = 1, i.e., the penalties are normalized.

The total HEAL loss is then:

LHEAL =
1

N

L−1∑
l=0

λl

N∑
i=1

Li,l. (5)

Algorithm 1 Computation of HEAL Loss

Require: Mini-batch {(xi,yi)}Ni=1, temperature τ , number of levels L
1: Compute embeddings: hi = fθ(xi)/∥fθ(xi)∥2
2: Initialize total loss: LHEAL ← 0
3: for l = 0 to L− 1 do
4: Compute penalty λl using Eq. (4)
5: for i = 1 to N do
6: Determine positive set P (i, l) using Eq. (2)
7: if |P (i, l)| > 0 then
8: Compute Li,l using Eq. (3)
9: Update total loss: LHEAL ← LHEAL + λlLi,l

10: end if
11: end for
12: end for
13: return LHEAL
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Algorithm 1 outlines the computation of LHEAL for a mini-batch.

3.3 Fine-tuning Embedding Models with HEAL for RAG

To enhance retrieval performance in RAG systems, we fine-tune the embedding
model to align with the hierarchical structure of the document corpus. Given a
specialized document corpus, we first apply HNMFk (as described in Section 3.1)
to the corresponding TF-IDF matrix X producing hierarchical cluster labels yi =

(y
(0)
i , y

(2)
i , . . . , y

(L−1)
i ) for each document i. Next, we generate embeddings from

each document xi using a pretrained embedding model fθ(.). The embedding
model is initialized with pre-trained weights and produces normalized embeddings
hi ∈ Rd for document i. To align embeddings with the hierarchical structure, we
optimize the HEAL presented in 3.3.

The embedding model is trained by minimizing LHEAL using gradient-based
optimization:

θ∗ = argmin
θ

LHEAL,

where θ are the parameters of the embedding model fθ(·).
After fine-tuning, the updated embeddings hi = fθ∗(xi) are used to replace

the initial embeddings in the vector store. During inference, a query q is embed-
ded using fθ∗(·) as hq = fθ∗(q), and retrieves top p documents based on cosine
similarity:

Similarity(q,xi) =
h⊤
q hi

∥hq∥∥hi∥
.

To maximize retrieval performance in RAG systems, it is essential to align the
query embeddings with the hierarchically aligned document embeddings. Since
queries are typically shorter and may not capture the full semantic richness of the
documents, we need to semantically align queries and documents in the embedding
space. To achieve this, we generate question-answer (Q&A) pairs using a language
model (e.g., LLaMA-3.1 70B) for each document and leverage HEAL to jointly
align both query and document embeddings during training. For each document
xi, we generate a set of queries {qi,k}Ki

k=1, where Ki is the number of queries
generated for document i. Each query qi,k is associated with the same hierarchical
labels yi as its source document xi, since it is derived from the content of xi.We
extend the HEAL framework to include both documents and queries by defining
a unified set of samples:

S = {x1, . . . ,xN} ∪ {qi,k | i = 1, . . . , N ; k = 1, . . . ,Ki}.
Each sample sj ∈ S has an associated hierarchical label yj , where:

yj =

{
yi, if sj = xi (document);
yi, if sj = qi,k (query generated from document xi).

Based on this dataset, the HEAL is leveraged to finetune the embedding model .

4 Experiments

4.1 Datasets

We evaluate our method on datasets specifically constructed from scientific publi-
cations in the domains of Material Science, Medicine, Tensor Decomposition, and
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Cybersecurity. To construct our datasets, we leveraged the Bibliographic Util-
ity Network Information Expansion (BUNIE) method, a machine learning-based
approach that integrates subject-matter expertise in a human-in-the-loop frame-
work Solovyev et al. [2023]. For completeness, we briefly summarize the BUNIE
approach in this paper. BUNIE begins with a small core corpus of documents se-
lected by subject-matter experts (SMEs). From this starting point, it constructs
a citation network to identify additional relevant documents, leveraging BERT
based text embeddings to assess semantic similarity. Through iterative cycles of
dataset expansion and pruning—guided by embedding visualization, topic model-
ing, and expert feedback—the method ensures the corpus is both comprehensive
and domain-specific. We apply this procedure to each scientific domain with guid-
ance from SMEs, who provide target keywords/phrases and/or a core set of papers
relevant to the sub-topic of interest within the domain. Using this knowledge base,
we employ BUNIE to expand the dataset from the initial core papers to a larger
collection of domain-specific documents.

1. Material Science: A collection of 46,862 scientific articles, which explore 73
Transition Metal Dichalcogenides (TMD) compounds, combining transition-
metal and chalcogen atoms (S, Se, or Te). With a layered structure similar to
graphite, TMDs excel as solid lubricants and exhibit unique quantum phases
like superconductivity and charge density waves. Their atomically thin lay-
ers offer tunable properties, with applications in spintronics, optoelectronics,
energy harvesting, batteries, and flexible electronics.

2. Healthcare: A collection of 9,639 scientific articles, which examine Pulmonary
Hypertension (PH) disease - a rare condition causing elevated pulmonary ar-
terial pressure, right heart strain, and reduced oxygen delivery. The WHO
classifies PH into five groups based on causes, including pulmonary arterial
hypertension (PAH), which has a prevalence of 15-25 cases per million in
the U.S. Treatments such as endothelin receptor antagonists and prostacyclin
analogs aim to improve symptoms, but prognosis varies, with untreated PAH
having a median survival of less than three years.

3. Applied Mathematics: A collection of 4,624 scientific articles, which explore
tensor network techniques, such as Tensor-Train (TT) decomposition, which
recently emerged as a powerful mathematical tool for solving large-scale Partial
Differential Equations (PDEs). Tensor network PDE solvers efficiently manage
high-dimensional data by mitigating the curse of dimensionality, drastically re-
ducing computational costs and memory usage while maintaining high solution
accuracy. These advancements hold significant promise for breakthroughs in
scientific computing, including material science, climate modeling, and engi-
neering design optimization.

4. Cyber-security: We created a dataset of 8,790 scientific publications focusing
on the application of tensor decomposition methods in cybersecurity and ML
techniques for malware analysis. This dataset serves as a knowledge base cov-
ering topics for cyber-security such as ML-based anomaly detection, malware
classification, novel malware detection, uncertainty quantification, real-world
malware analysis challenges, tensor-based anomaly detection, malware char-
acterization, and user behavior analysis.
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4.2 Experimental Setup

For training, we used the Adam optimizer with a learning rate of 10−5, a batch
size of 128, and early stopping based on validation performance with a patience of
5 epochs. The experiments were conducted on a high-performance computing clus-
ter, with each node equipped with 4 NVIDIA GH200 GPUs. Document metadata,
comprising the title and abstract combined, were used as input. Hierarchical labels
were generated using HNMF with dataset-specific factorization depths: Material
Science (depth 3), Healthcare (depth 4), Applied Mathematics (depth 3), and Cy-
bersecurity (depth 3). HEAL loss was applied with a temperature parameter of
0.07. The embedding base model, SciNCL Ostendorff et al. [2022], was chosen
for its robust contrastive pretraining on scientific documents, serving as a strong
baseline for fine-tuning. The data was split into 60% training, 20% validation, and
20% test sets, with early stopping monitored on the validation set. Evaluation
metrics were reported on the test set, while Q&A retrieval analysis used the entire
dataset (train + validation + test) for constructing the vector store.

The efficacy of the RAG system was evaluated at two levels. First, we char-
acterized the embeddings on document-level tasks, including hierarchical classi-
fication, retrieval, and hallucination measurement. For hierarchical classification,
we used a hierarchical classifier applying random forests to each node [Miranda
et al., 2023]. The classifier is trained on embeddings corresponding to train dataset
and evaluated against the test set. We perform this for embeddings derived from
aligned and unaligned embedding model. Retrieval performance was assessed by
measuring whether retrieved documents belonged to the same hierarchical class as
the query document. Hallucination likelihood was evaluated based on the retrieval
of incorrect documents for a given query. Second, we evaluated the performance of
the embedding model within a RAG framework. To support retrieval and halluci-
nation analysis, we used the LLaMA-3.1 70B model to generate 10 Q&A pairs per
document using abstracts as input, providing a robust test for embedding align-
ment and retrieval capabilities. Next, we leveraged the questions as queries to the
embedding model to retrieve the best metadata and assessed whether the model
retrieved the exact document that generated the query during Q&A analysis, as
well as the rank of the returned document within the top 10 results. Furthermore,
the retrieved documents were augmented with LLaMA-3.1 70B LLM to generate
responses, with hallucinations evaluated based on response accuracy and relevance.

Given the specialized nature of our dataset and the requirement for hierarchical
labels, fine-tuning is essential. Comparing our method to approaches that do not
leverage hierarchical labels is inequitable, as they are inherently less effective for
this task. Our approach simplifies training by eliminating HEAL loss hyperparam-
eter tuning, unlike HiMulCon Zhang et al. [2022], which requires extensive tuning
of penalty parameters for optimal results. While HiMulCon focuses on root-level
classification in vision datasets, our method aligns embeddings across all hierar-
chical depths. We optimize hierarchical metrics such as classification, retrieval,
and hallucination indirectly through the HEAL loss, ensuring a robust alignment
with the hierarchical structure.

For these reasons, we evaluate the performance of HEAL using the baseline
model SciNCL, both without and with hierarchical alignment on our diverse spe-
cialized datasets. We evaluate performance using hierarchical metrics to capture
nuances of hierarchical label structures in retrieval, classification, and hallucina-
tion assessments as presented in Table 1 .
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Metric Formula Description
Hierarchical Relevance(q, r) = Average label match
Relevance 1

L

∑L−1
l=0 δ(yl

q, y
l
r) across hierarchy levels

Fraction of
Hierarchical 1

k

∑k
i=1 Relevance(q, ri) hierarchically relevant

Precision@k documents among top k.
Fraction of

Hierarchical
∑k

i=1 Relevance(q,ri)∑
r∈Relevant(q) Relevance(q,r) hierarchically relevant

Recall@k documents retrieved.
Discounted gain based

Hierarchical
∑k

i=1
2Relevance(q,ri)−1

log2(i+1)∑k
i=1

2IdealRelevance(q,ri)−1
log2(i+1)

on hierarchical relevance.

nDCG@k
Balance between

Hierarchical 2·Precision·Recall
Precision+Recall hierarchical precision

F1 Score and recall.
Measures retrieval

Hierarchical 1−
∑k

i=1 Relevance(q,ri)
k

of irrelevant documents
Severity in hierarchical setting.
Hierarchical Fraction of
False Positive Irrelevant hierarchical documents in top k

k
irrelevant hierarchical

Rate@k documents among top k.
Table 1: Hierarchical Metrics for classification, retrieval and hallucination
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Fig. 2: Embedding visualizations for different datasets, projected using t-SNE for
dimensionality reduction. The density contours represent the kernel density es-
timation (KDE) of the embeddings in the 2D space, highlighting the clustering
structure. Subplots show the Material dataset (a) before and (b) after model align-
ment, and the Healthcare dataset (c) before and (d) after model alignment. The
contours illustrate the density distribution of embeddings, showcasing the effect
of alignment on cluster compactness and separation.

4.3 Results

Table 2 summarizes the performance metrics for three datasets (Healthcare, Ma-
terials, Applied Mathematics, and Cybersecurity) across three tasks: classifica-
tion, retrieval, and hallucination evaluation. The aligned model corresponds to the
embedding model trained using the HEAL loss, whereas the non-aligned model
corresponds to the original embedding model without HEAL-based training. The
metrics are reported for both non-aligned and aligned SciNCL embeddings, demon-
strating the significant impact of HEAL on improving performance. Figure 2 il-
lustrates hierarchical embedding alignment achieved through HEAL training, re-
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Table 2: Performance Metrics Across Datasets (Healthcare, Materials, Cyber, Ap-
plied Mathematics) for Aligned and Non-aligned Embeddings for k = 10

Task Metric Healthcare Materials Cyber Applied Mathematics
Non-aligned Aligned Non-aligned Aligned Non-aligned Aligned Non-aligned Aligned

Classification
F1 Score 0.5164 0.6588 0.6469 0.990 0.7130 0.8151 0.7541 0.8048
Precision 0.5134 0.6590 0.6453 0.990 0.6975 0.8121 0.7415 0.8112
Recall 0.5194 0.6586 0.6485 0.990 0.7293 0.8180 0.7672 0.7985

Retrieval

Precision@k 0.3103 0.4983 0.4787 0.9707 0.6397 0.7518 0.6576 0.7636
Recall@k 0.0164 0.0290 0.0058 0.0116 0.0112 0.0133 0.0182 0.0212
MRR 1.6259 2.2525 1.6541 2.9972 2.7538 3.1482 2.9065 3.2245
nDCG@k 0.3752 0.5908 0.4982 0.990 0.6781 0.7908 0.7187 0.8280

Hallucination FPR@k 0.9386 0.8771 0.8534 0.0878 0.7968 0.6236 0.8191 0.6529
Severity 0.7306 0.5533 0.6041 0.0644 0.4402 0.3654 0.4119 0.3353

sulting in well-separated super and sub-clusters for the Materials and Healthcare
datasets which enhances the performance of downstream tasks.

First, we evaluate the performance on document-level tasks using hierarchical
labels. Specifically, we assess the ability of the hierarchical classifier to predict
hierarchical labels in the classification task. Additionally, we quantify the retrieval
of documents from the same hierarchical category based on a query document to
characterize retrieval accuracy and evaluate hallucinations. The results presented
in table 2 demonstrate that HEAL significantly improves hierarchical classifica-
tion metrics across all datasets. For the Healthcare dataset, the Hierarchical F1
Score improves from 0.5164 to 0.6588, reflecting a more accurate representation
of hierarchical labels. Similarly, the Materials dataset achieves near perfect clas-
sification metrics (F1 Score, Precision, Recall = 0.99) with aligned embeddings,
while the most challenging Healthcare dataset (4 depth cluster label) sees im-
provements in F1 Score from 0.5164 to 0.6588. In retrieval tasks, HEAL aligned
embeddings consistently outperform non-aligned embeddings across all metrics.
For the Healthcare dataset, Hierarchical MRR improves from 1.6259 to 2.2525,
and nDCG@k increases from 0.3752 to 0.5908 where k = 10, indicating better
ranking and retrieval relevance. The Materials dataset achieves a dramatic in-
crease in retrieval precision, with Precision@k rising from 0.4787 to 0.9707, while
nDCG@k reaches 0.99, showcasing near-perfect retrieval performance. For the Cy-
ber dataset, aligned embeddings yield an MRR improvement from 2.7538 to 3.1482
and a corresponding nDCG@k increase from 0.6781 to 0.7908. Hallucination met-
rics further underscore the superiority of HEAL. Aligned embeddings reduce hallu-
cination rates significantly across all datasets. For the Healthcare dataset, FPR@k
drops from 0.9386 to 0.8771, and severity decreases from 0.7306 to 0.5533, indicat-
ing fewer irrelevant or misleading retrievals. The Materials dataset shows the most
striking improvement, with FPR@k reduced from 0.8534 to 0.0878 and severity
declining from 0.6041 to 0.0644, nearly eliminating hallucination tendencies. For
the Cyber dataset, aligned embeddings lower FPR@k from 0.7968 to 0.6236 and
severity from 0.4402 to 0.3654.

Next, we evaluate the performance of aligned RAG in retrieving the correct
documents for generated queries to augment the LLM and minimize hallucinations.
From each test dataset, we randomly sampled 100 documents and generated 10
Q&A pairs per document using the LLAMA-3.1 70B model, resulting in a total
of 1,000 Q&A pairs for each dataset. Each Q&A pair was tagged with the cor-
responding document from which it was generated. The prompt used for Q&A
generation was as follows: “First, provide a concise summary of the following ab-
stract that emphasizes its key concepts and hierarchical relationships. Then, based
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on this summary, generate 10 unique, nuanced Q&A pairs. Focus on creating ques-
tions that delve into specialized details of the hierarchical concepts discussed.” The
generated queries were used to fetch documents via both aligned and unaligned
models. We assessed the ability of each model to correctly retrieve the original
document and evaluated the rank/order of retrieval. On average, the unaligned
model achieved an MRR of 0.273 and a Recall@10 of 0.415. These metrics repre-
sent regular retrieval scores, not hierarchical scores. In contrast, the aligned model
significantly improved performance, achieving an MRR of 0.514 and a Recall@10
of 0.731, demonstrating its superior ability to retrieve the correct set of docu-
ments. Furthermore, when integrating RAG with LLAMA-3.1 70B for generating
answers from the queries and retrieved documents, the unaligned model produced
a ROUGE score of 0.42, while the aligned model achieved a ROUGE score of 0.68.
This highlights the impact of alignment on improving the quality and relevance of
generated responses.

5 Conclusion

In this work, we introduced HEAL, a novel framework for aligning embeddings in
RAG systems through hierarchical fuzzy clustering and matrix factorization, inte-
grated within a contrastive learning paradigm. HEAL effectively computes level-
specific contrastive losses and applies hierarchical penalties to align embeddings
with domain-specific structures, enhancing both retrieval relevance and classifica-
tion performance. Experimental results across diverse domains — Healthcare, Ma-
terials Science, Cybersecurity, and Applied Mathematics — demonstrate HEAL’s
capability to significantly improve retrieval accuracy and mitigate hallucinations
in LLM-based systems. By bridging hierarchical semantics with contrastive align-
ment, HEAL establishes itself as a versatile and robust tool for advancing RAG
methodologies, enabling more precise, reliable, and domain-adaptive applications
of large language models.
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